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ABSTRACT 

The results of a study of the dynamics of separated flow over blunt 
bodies a re  reported, The various types of flow separation occurring 
on the Saturn-Apollo launch vehicles have been examined and analyzed 
in detail. The analytical relationships between unsteady and static 
characteristics are derived for different separated flow patterns using 
quasi-steady methods. The detailed results are reported in special 
interim reports. This summary report is intended to presevt in con- 
densed form the progress and final results of the study. It is shown 
that separated flow can produce large and highly nonlinear aero- 
dynamic loads which have a dominant influence on the vehicle dynamics, 
be it a rocket booster or a reentry vehicle. In all cases where experi- 
mental dynamic data have been available, the quasi-steady predictions 
show good agreement with the experimental results, 
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Section 1 

SUMMARY 

Certain geometric features common to many manned boosters, such as tower-mounted 

escape rockets and steep interstage flares, are  sources of flow separation that may 
dominate the vehicle dynamics in the transonic Mach number range where the dynamic 
pressure is large. Such is the case with the Saturn-Apollo manned boosters. Several 
specific types of flow separation occurring on the Saturn-Apollo launch vehicles have 
been singled out for special study. The dynamic effects of separated flow were derived 
using experimental static loads and quasi-steady methods. These various separate 
efforts a re  reported in detail in special interim reports, and only the highlights and 
main conclusive results are  included in the present technical summary report. The 
quasi-steady predictions are shown to agree well with experimental dynamic results. 
Thus is the transonic dynamic instability of blunt-nosed, cylinder-flare reentry bodies 
closely predicted, and the undamping effect of a flow separation disk is readily fore- 
casted. Furthermore, the aerodynamic damping measured on elastic models of the 
Saturn I-Apollo launch vehicle agreed well with the quasi-steady predictions, making 
it possible to predict with satisfactory accuracy the full-scale aeroelastic character- 
istics of the Saturn I booster, including several last minute changes in vehicle geometry, 
structure, and trajectory. 

1-1 

1 
t d  LOCKHEED MISSILES & SPACE COMPANY 



2 -8 0-65 - 1 

Section 2 

INTRODUCTION 

Since any rocket design is a compromise between a number of conflicting requirements 
for various flight regimes, it is not surprising that many recent designs a re  not aero- 
dynamically clean. As a result, many vehicles - both ascent and entry vehicles - ex- 
hibit large regions of separated flow especially in the transonic Mach number range. 
The Saturn-Apollo launch vehicles are replete with flow separations of various types 
(Fig. 2-1). These have a dominating influence on the aerodynamic loading over the 
vehicle in the transonic and low supersonic speed range where the vehicle experiences 
maximum dynamic pressure, (Figs. 2-2 and 2-3). 

The static loads can be determined by wind tunnel tests of a rigid model, and the 
buffeting force input from separated flow can also be assessed reasonably well from 
rigid-model wind tunnel tests. The remaining information needed for the evaluation 
of vehicle dynamics - the aerodynamic damping - is more difficult to obtain, however. 
To simulate elastic vehicle response in a wind tunnel test is a major undertaking. The 
model design and the test are  extremely complicated, and the results of this expensive 
test may still be of limited value. Even if a satisfactory set of data is obtained, it 
may well be for an obsolete configuration. The complexity of the elastic model neces- 
sitates lead times of one-half to one year; and during that time the vehicle design is 
likely to have changed. Without any analytical means, the wind tunnel data cannot be 
applied to a new design. 

' 

These problems were recognized at the Marshall Space Flight Center in connection 
with the design of the Saturn-Apollo launch vehicles. As  Lockheed had encountered 
similar problems on the Agena ascent vehicles, Lockheed Missiles & Space Company 
(LMSC) was engaged by the Marshall Space Flight Center in a consultant capacity to 
develop analytical means for prediction of full scale vehicle dynamics. The approach 
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Fig. 2-1 Supersonic Flow Field on the Saturn-Apollo Launch Vehicle 
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ESCAPE ROCKET WAKE AT M = 1.43 0.2 r 
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2 N D  FREE-FREE BENDING MODE -0.5 - 

STATIC LOADS AT M = 1.43 
ACTUAL STATIC LOAD DISTRIBUTION ---- ESTIMATED ATTACHED FLOW DISTRIBUTION 

U 

\- 
Fig. 2-2 Supersonic Static and Dynamic Loads on the Saturn Booster, ( Q = 0 ) 
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Fig. 2-3 Subsonic Static and Dynamic Loads on the Saturn Booster, Tower Off (CY = 0 )  
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to the accomplishment of this ambitious task has been to study each of the different 
separated flow phenomena occurring on the Saturn-Apollo booster separately, develop- 
ing analytical means of predicting the dynamic characteristics from experimental static 

characteristics. The progress of this work has been reported in detail in the following 
interim reports: 

'ISteady Loads on Spiked Blunt Bodies of Revolution, It (Ref. 1) 
I'Separated Flow Effects on the Static Stability of Cone-Cylinder-Flare Bodies, 

(Ref. 2) 

IIStatic Loads on the Saturn I-Apollo Launch Vehicle,I1 (Ref. 3) 

llReport on Saturn I-Apollo Unsteady Aerodynamics, (Ref, 4) 

"Static Pressures and Forces Generated by a Flow Separation Disk," (Ref. 5) 

TJnsteady Characteristics of a Spiked Bluff Body,11 (Ref. 6) 

IIForces Induced on Bodies in Free Wakes and Three Dimensional Cavities, 
(Ref. 7) 
"Separated Flow Effects on the Dynamic Stability of Blunt-Nosed Cylinder-Flare 
Bodies,11 (Ref. 8) 

* 

The present report is intended to provide a comprehensive summary of the results of 
the study illustrating two things in particular: (1) the main features of the different 
types of flow separation, and (2) the accuracy of quasi-steady predictions of dynamic 
data. 

2-5 
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Section 3 

STATEMENTOFPROBLEM 

The loads occurring in a separated flow region fa l l  generally into two categories. The 
most significant loading is caused by the effect that forebody attitude and relative dis- 
placement have on the flow separation, thus modifying the load on the submerged body. 
It is obvious that a time lag will occur between the instant the separation source (the 
forebody) is perturbed and the time the separated flow field has altered the submerged 
body loads, The time lag causes a phase shift in the dynamic case such that statically 
stabilizing loads become dynamically destabilizing. This time lag effect is greatly 
modified by structural or  mechanical phasing. Thus, when a node of the bending body 
or  the center of gravity (oscillation center) of the rigid body occurs between the separa- 
tion source and the submerged body element, the time lag effect is greatly amplified, * 

and moderately stabilizing static loads will cause drastically high undamping effects. 
The remainder of the load in the separated region is determined by the local attitude of 
the submerged body element. Dynamically, this load is dependent upon the instantaneous 
change in local attitude and displacement. This loading is, for large regions of separa- 
ted flow, significantly smaller than the forebodydependent time-lag-sensitive loading, 
and the latter will, therefore, dominate the separated flow contribution to the vehicle 
damping. Consequently, when a node o r  oscillation center is between separation source 
and submerged body element total reversal occurs, and statically stabilizing loads 
result in dynamically destabilizing loads, and vice versa. 

The description of the dynamic effects of separated flow over blunt bodies proceeds as 
follows: first the quasi-steady analytic tools relating static and dynamic effects are 
described in utmost brevity and generality, referring all mathematical exercises to an 
appendix (Appendix C). Thereafter, the various types of flow separation occurring on 

the Saturn-Apollo boosters are discussed briefly. The characteristics of each type 
of flow separation are then discussed, starting with wake impingement and spike-induced 
separation, and followed by a discussion of nose-induced separation and shock-induced 
separatioa Finally, the correlation between quasi-steady predictions and dynamic 
wind tunnel test resultrs with an elastic model is examined. 
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Section 4 

QUASI -STEADY ANALYSIS 

Quasi-steady forces a re  essentially static forces modified to account for slow pertur- 
bations from the static (steady state) condition. The quasi-steady force can in co- 

efficient form be expressed as the product of the static force derivative and an effective 
angle of attack suitably modified to account for the slow perturbations from the static 
value, that is 

- 
In classical quasi-steady theory, a0 + CY is the local instantaneous c ross  flow angle. 

' T v  i a! + a = a  + e + -  
0 0 U (4.2) 

where 

a 

8 

h = Translatory velocity 
U = Vehicle velocity 

= Trim angle of attack 

= Angular perturbation from a. 
0 

This formulation is valid for aerodynamic forces only dependent upon local conditions. 
A s  was indicated earlier,  this is only a small portion of the aerodynamic load on a 
body element submerged in separated flow. The main portion of the load is dependent 
upon upstream conditions at the separation source. One can express the separation- 

induced loading in the following form. - /v 

+ dc = dc ( ( Y o ) +  A b  (q 
a " N N 

dc = dc 
* NQ.S. Nstatic 

(4.3) 
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The separation-induced load a t  time t , Ah (t) , is dependent on the separation- 
inducing generalized angle of attack at  an earlier time, t - A t .  That is 

? 
dc ( t )  = dc C Y ;  ( t  - A t )  (4.4) 

N A 

In the situation depicted in Fig, 4-1, let us  further assume that the body is rigid, 

describing pitch oscillations around 2 ,  Appendix C shows how the elastic body de- 
scribing bending oscillations is analogous to the rigid body case. 

- 
XN X 

Fig, 4-1 Coordinate System and Definitions 
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The quasi-steady force NS i n  coefficient form can be expressed as (see Appendix C): 

where 

as ( t )  = O(t) - (xs -G) i ( t ) /U  

uN ( t  - A t )  = e ( t  - A t )  - (% - ;)e(t  - At)/U 

For slow oscillations 

O ( t  - At)  = e ( t )  - A&(t) 

i ( t  --"At) w b ( t )  - Atg(t) y b ( t )  

Thus cys ( t ) ,  crN ( t  - At) ,  and P( t  - At)  become simply 

rJ 

as ( t )  = e ( t )  - (xS - G)e'(t)/u = e ( t  - A t  
S 

( t  - At) = O ( t )  - Atd( t )  - (% - F)e'(t)/v 
h, 

"N 

= O ( t  - At - A%) 
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- - 
x .  - x  

e ( t  1 
S 

x - x  
O ( t  - At) - N a 

XN - "6 X N -  xs 

where 

G s u  
5 = x/c 

(4.7) 

In Eq. (4.5) A t  is a true time lag and is always positive, its magnitude being dependent 
upon the mean velocity, n, with which the effects of cross flow changes at a r e  com- 

municated through the separated flow down to the submerged body element at  x, . The 

0 
Y 

rv h/ 
quantities Ats and AfN are  generalized time lags corresponding to the effect of mechan- 

/u 

ical or  structural phasing. That is, for the 
hr S 

A h  a r e  positive, representing lag effects. In other words, the negative crossflow 
angles, - (xs - Z )  e/U and - (% - 57) e/U , induced by the pitch velocity oppose the 
crossflow angle e due to body attitude. Thus, the resultant crossflow angle lags the 
body attitude, The effective time increment of this lag is AtN a t  5 and Ats a t  xs . 
When the oscillation center is forward of xs and.%, the pitch velocity crossflow 
amplifies the attitude angle, thus causing the resultant crossflow to lead the body 
attitude. 

location shown in Fig. 4-1, both At- and 

/v h/ 

Generalizing further, the force components in Eq. (4.6) that contribute dynamically, 
i. e. ,  affect the damping, can all be expressed through the following equation. 

4-4 
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h/ 
CF ( t )  = c e ( t  - 7 )  

h/ 

7 = At + A t  

When 7 is positive, static and dynamic stability effects a r e  of opposite sign, a s  is 
illustrated by Fig. 4-2. 

r FWD OK. CTI? 

0 
0 I 0 

0% .. a > BODY AT TIME 1' 

7 AFT OK. CTR 
'= to -  7 I \. \ .\/ \ \ 

\ I y+(-lt=+o BODY AT TIME (-p 

Fig. 4-2 Dynamic Time Lag Effects 

When the body comes down to zero angle of pitch at  time t = to, it has a residual 
force generated at  the earlier time t = to - 7. For the forward oscillation center, 
where the body force is statically stabilizing, the residual force will be negative, thus 

accelerating the pitching motion, That is, the body force is undamping (dynamically 
destabilizing). For the aft oscillation center the effects a re  the opposite, i. e. , the 
body force is statically destabilizing but dynamically stabilizing (damping), 

4-5 
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, This reversal  between static and dynamic effects is especially drastic when the 

mechanical phase lag At adds to the true time lag A t .  Figure 4-1 and Eq. (4.5) 

show that A h  adds lag when the oscillation center is aft of the separation source, 
i. e. , when 2 < xN.  It was shown earlier by use of Fig. 4-2 that the effects were un - 
damping for oscillation centers forward of the submerged body, i. e. , for f > x 

damping for aft oscillation centers, x < x . Thus, the dramatic change from static 
stability to large dynamic instability occurs when the oscillation center is located be- 
tween the separation source and the submerged body. This is illustrated in Fig, 4-3 

which shows the effect that the location of the oscillation center has on the dynamic 
and static stability of the submerged body. Three different separation sources a re  
considered. The disk produces a wake aligned with the free stream, i. e., the effect 

= 0 ,  and the translatory derivative, AiC , is the only of CY N is zero,  aicN, 
wake-induced effect. The blunt wake source produces separated flow ahead of ita base 
and directs the wake upwards adding AiCN 

h, 

and 
6 ’  

S 

NP 
> 0 to the pure translatory derivative 

. A slender wake source directs th% wake initially along its centerline and 

from the free-stream direction, producing a negative force derivative 
i i 

A CN, < 0 . For comparison purposes, the total wake-induced derivative A CN 

stability effects. The results shown in Fig, 4-3 thus illustrate how the reversal from 
static stability to dynamic instability is increasingly worse when the wake source is 
changing from a slender ogive (or cone) via a disk shape to a blunt ogive. The escape 

rocket disk on the Saturn-Apollo launch vehicle produces this effect for the second 
bending mode where the forward nodal point is located between the escape rocket and 
the command module (Fig. 2-2). 

cr ’ i- A i c  is held constant so that the different wake sources produce identical static 
N P  

i. 
I 
I 
L 
I 
t. 
e. 
C 
II 
t 
I 
t 

c 

7’ 
b 
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C AND C 
"e "e 

- I 
I 

I 

xC G XN xS 

= 1  
Q! 

cN 

AiCN + A i CN = 10 

CY B 

0 Disk Wake Source 

- 

9 
HCY AICN = I 3 Blunt Wake Source Ref, Area = 7 

CY -3 Slender Wake Source 

Fig. 4-3 Wake-Induced Dynamic Effects for Various Oscillation Centers 

4-7 

LOCKHEED MISSILES b SPACE COMPANY 



x-4. 
H' . 2. 

7 
t 

I I--' 

3 

-.. 

2 -80-65 - 1; 

Section 5 

DISCUSSION OF RESULTS 

The separated flow produced by the escape rocket on the Saturn-Apollo launch vehicle 
(Fig. 2-2) drastically alters the aerodynamic loads on the command module. Figure 5-1 
shows how the flow separation reduces the forebody axial force at  a = 0 while substan- 
tially increasing the normal force derivative. The latter effect results from translating 
the wake over the submerged body, thus exposing the windward side to rapidly increasing 
velocities, and the leeward side to reduced velocities. This wake movement also gener- 
ates a statically stabilizing axial force moment (force-couple). The similar wake pro- 
duced by a spike, Fig, 5-2, shows that the wake-translating effect dominates. The wake- 
translating effects of a! and of spike deflection angle p should be the same, since the 
relative spike deflection is the same ( z  = aL pL for small angles), Thus, the 
small difference between a- and p-characteristics is due to rotating the submerged'body 
through the angle a. That is, the local crossflow attitude effect CN,, is small compared 
to the force derivative ~ C N  induced by the wake movement. P 

The translatory derivative dC is proportional to the separation-induced drag 

reduction at  a = 0 (Ref. 1). The spike length giving the maximum drag reduction on a 
hemisphere-cylinder body is shown in Fig, 5-3 a s  a function of Mach number, The 
large difference in minimum drag between turbulent and laminar reattaching wakes is 
also illustrated. When the spike length deviates from the optimum length, less drag 
reduction is achieved (Fig. 5-4). The decrease in drag reduction for shorter spikes 
can be normalized in the way shown to eliminate the effect of Mach number, thus pro- 
viding a means of predicting spiked body drag. (An orderly weak influence of the basic 
nose shape has been absorbed in the e r ro r  band shown without distinction from the pure 
data scatter.) When the spike is made longer than the optimum length, retarded spike 
separation occurs producing increased drag due to the fact that the boundary layer at 

separation now is turbulent and produces a higher plateau pressure (in the lldead-airll 
region). 

NP 
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Fig. 5-1 Effect of Escape Rocket on Apollo Command Module Forces at M = 1.0 
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Fig. 5-3 Optimum Spike Length and the Associated Minimum Forebody Drag on a 
Hemisphere-Nose Body at Supersonic and Hypersonic Mach Numbers 
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Retarded separation on a thick spike is essentially the flow pattern produced by a disk, 
such as on the escape rocket in Fig. 2-2. Analysis of data for disk-induced separation 
(Ref. 5) shows that the axial force couple induced on the disk by the wake movement is 
a dominating aerodynamic characteristic, at least at  moderate supersonic Mach num- 
bers when the lifted boundary layer (free shear layer) is not excessively thick 
(Fig. 5-5). Then the high velocity portions in the shear layer produce large pressure 
increases on the r im  of the disk, A slight movement of the separation, such a s  occurs 
a t  low angles of attack, produces a drastic change in the axial forces and associated 
pitching moment on the disk (illustrated in the inset in Fig. 5-5). The separation region 
is greatly increased on the leeward side and slightly decreased on the windward side due 
to forebody crossflow effects on the boundary layer approaching separation. The analo- 

gous situation exists in the shock-induced separated flow regions ahead of conical frus- 
tums on cylindrical bodies, a s  will be discussed later. In the dynamic case a true 
time lag exists, a s  the forebody crossflow changes have to be transmitted downstream 
to affect the separation and the disk loading, 

Thus, a s  was shown in the previous section, one can expect large undamping effects 
from the statically stabilizing axial force moment induced on the disk face (Fig. 5-6) .  
In addition, the negative forebody angle of attack induced by the pitching velocity also 
adds phase lag. The band shown represents the scatter in the experimental dynamic 
data as well as the upper and lower bounds predicted by quasi-steady theory (Ref. 6). 
At M = 5 and higher Mach numbers the induced axial force moment is reduced to the 
same order of magnitude as the normal force moment (Fig. 5-5) and can no longer 

drive the body dynamically unstable (Fig. 5-6). The undamping peak shown in Fig. 2-2 
is the dynamic effect of the separation-induced axial force couple on the escape rocket 
disk. 

e 

The axial force deficit on a body, submerged in the wake from another body or  in the 
separated flow region created by a spike, furnishes an important clue for the deter- 
mination of the average convection velocity, v' , a s  well a8 of the local crossflow effect, 

the following estimates of 3 and CN,, . 
, Defining a mean dynamic pressure deficit from the axial force deficit gives 

%S 
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Fig, 5-6 Separated Flow Pattern and Pitch Damping of a Cylindrical Body With a 
Flow Separation Disk 
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where 

= forebody axial force of the body submerged in the separated flow 

- forebody axial force in attached flow (a t  a! = 0 )  

s (a t  Q = 0 )  

a 
= body normal force derivative in attached flow 

cN a a 

The veracity of using the axial force reduction to compute the localcrossflow effect has 
been investigated experimentally (Ref. 7). As indicated by the data in Fig, 5-7, the 
method appears to be good for a wake source distance of 1/2 a caliber (base diameter 
of submerged body) and for 2 calibers distance or  more. For intermediate distances, 
rotation of the submerged body pushes the wake further to the leeward side creating 
additional normal force. Judging by the shadowgraphs in Fig. 5-7 this occurs when 
the wake closes (necks) on the submerged body. When the body is closer to the wake 
source, the wake opens up, and reattachment occurs aft of the body shoulder, s o  that 
body rotation has negligible effect on the wake configuration, When the body is moved 
af t  of the wake neck, (see M = 1.96 shadowgraph in Fig. 5-7), the upstream communi- 
cation is effectively cut off, When the submerged body is located in the wake neck, 
however, any change of the reattachment conditions, e. g, through local angle of attack, 
alters the wake geometry, In order to affect the wake, the submerged body must affect 
conditions at  the wake source, The wake source base-pressure should register this 
upstream influence, anddoes, asis confirmedby the data in  Fig, 5-8. There is a very 
good correlation between the overeffectiveness of local cros8flow, CN t 

tivity of the wake-source base-pressure to the same crossflow, 8Cpbw/8aS, 

and the sensi- 
Qs ’ 
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a 

? 

When the reattachment on the submerged body is changed by translating the wake over 
the body, a similar upstream communication occurs increasing the translatory deri- 
vative ACN a s  shown in Fig. 5-9. The wake directing effect of 
the wake source is similarily amplified, the blunt ogive shape having its positive nor- 

i mal force derivative increased by A C  

force derivative increased in  magnitude by an amount 4% 
data in Fig. 5-10, 

i i by an amount A% P P 

and the slender shape producing a negative 
W V  

, a s  illustrated by the % 

The wake source distances corresponding to the two different escape rocket geometries 
of the Saturn-Apollo launch vehicle are indicated in Figs. 5-7 through 5-10. It is evi- 
dent that the upstream communication effect is nonexistant for those distances, and 
that Eqs. (5.1) and (5.2), simple a s  they are ,  satisfactorily predict the characteristics 
of the Saturn-Apollo escape rocket wake (Fig. 5-11). Further research is needed, how- 
ever, to resolve the dynamic behavior of wakes that have strong upstream communication 
effects. 

When the escape system is removed, the blunt Apollo command module causes so- 
called nose-induced separation at  high subsonic speeds (Fig. 2-3). The pressure is 
constant in the separated flow region extending to the aft service module and flare, 
where the reattachment process occurs (Fig. 5-12). At angle of attack, the thinned and 
strengthened windward side boundary layer can, aided by the increased constraint from 
the external flow, withstand a higher adverse pressure gradient. This permits the wind- 
ward side pressures to approach attached flow values. On the leeward side, the effect 
is opposite but much less drastic, The nose-induced separation has plagued the missile 
industry for quite some time by producing dynamic instability and limit-cycling be- 
havior of blunt-nosed reentry bodies a t  transonic speeds (Ref, 8). For practical reasons 
(shortness and maximum enclosed volume), the blunt noses have often an ogive shape. 
The separation pattern and its effect on body pressures and forces are ,  however, very 
much the same as  for the body with conical nose-geometry (compare Figs. 5-12 and 
5-13). The separation drastically alters the pressure and load distribution, and pro- 
duces corresponding dramatic changes of the pitching moment, The data shown in 

- 
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Fig. 5-13 are  for very special test conditions where the flow is attached initially, but when 
a certain angle of attack (ad) is exceeded nose-induced separation occurs and persists 
from there on, (at all angles of attack) until the Mach number is increased. 

The effect of the nose-induced separation is to produce large static stability a t  low 
angles of attack, This is predominantly caused by the flare loading. The separation 
is directed by forebody crossflow at the nose shoulder. Thus, a s  described earlier, 
one can expect a correspondingly large undamping effect due to the time lag effect 
with mechanical phase lag added to the true time lag for all reasonable CG locations. 
This is confirmed by the data in Fig, 5-14, which also show that the quasi-steady 
predictions agree remarkably well with the experimental dynamic data, considering 
the appreciable data scatter. At higher angles of attack, the windward side has 
essentially attached flow and the leeward side is in a low velocity (dead air)  region 
(see shadowgraphs in Fig. 5-13). Thus, the separated flow effects essentially dis- 

appear, and small amplitude oscillations will be damped a t  large tr im angles of 
attack a s  illustrated in Fig. 5-15, Finite amplitude oscillations around zero angle 
of attack will be undamped for amplitudes below a certain value, and be damped for 
larger amplitudes. That is, the end result is steady oscillations a t  the limit cycle 
amplitude. The damping factor, C$ , used in Fig. 5-15 to demonstrate this non- 
linear amplitude effect, is the equivalent linear coefficient-effective damping deri- 

vative-defining the correct amount of energy dissipation per cycle. How this effec- 
tive damping can be computed for various types of nonlinearities induced by separated 
flow is shown in Ref, 8. Again, the agreement between predictions and experimental 
data is satisfying. 

0 

At sonic and low supersonic Mach numbers the blunt-nosed cylinder-flare bodies 
experience another type of flow separation, a s  illustrated in Fig, 5-16. The flow 
is attached a t  angles of attack below a certain critical value, ad ,  but separates on 

the leeward side a t  higher a ' s .  Decreasing angle of attack gives reattaching of the 
leeward side flow, usually at  a value below that causing separation. Even if one 

neglects this static aerodynamic hysteresis, the separation produces large nonlinear 
effects. The dynamic effects are  again caused by time lag and mechanical phasing. 
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Fig. 5- 19 Shock-Induced Separation Effects on the Saturn Forebody Pressure 
Distribution 
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The positive induced flare load is similar to that caused by the nose-induced separation, 

and the static and dynamic effects a re  also similar, although of lesser magnitudes. 
The negative shoulder load is a characteristic of all separated flow regions terminat- 
ing aft of the shoulder. When the separated flow extent is decreased, the negative 
shoulder load decreases. This is also the case for  the Apollo command module shoul- 
der load generated by the escape rocket wake (Fig. 5-21). When the Mach number is 
increased, the wake contracts and the negative shoulder load is greatly reduced in 
magnitude. At  the critical Saturn-Apollo service module length, an interaction between 
the reattaching escape rocket wake and the shock-induced separation occurs. The flare 
load suddenly increases where one would expect a minimum (Fig. 5-22). The peak 
flare load, correlatable with shock position, is due to  a sudden increase in relative 
shock movement when the leeward shock moves forward on the reattaching separated 
flow while the windward shock moves aft on the reattached turbulent boundary layer. 

The main phasing of the quasi-steady shock-induced load is generated by downstream 
time lag in realizing the effects of forebody crossflow. There are, however, secondary 
effects introduced through the upstream communication of changes in effective flare 
attitude a s  evidenced by the shadowgraphs in Fig. 5-18. These effects may not be too 
important except for certain critical flow geometries, such as the ones produced a t  
critical tower lengths (Fig. 5-7) or critical cylinder lengths (Fig. 5-22). Fortunately, 
the overall effect of shock-induced separation is usually moderate, both statically and 
dynamically, due to the combination of positive and negative induced loadings (see 
Figs. 2-2 and 2-3). 

The quasi-steady damping predictions for an elastic body compare well with what little 

experimental dynamic data that a re  available. A t  the NASA Langley Research Center, 
Rainey et al. have successfully undertaken the difficult task of simulating elastic 
vehicle dynamics in a wind tunnel test (Ref. 9). An 8-percent dynamically-scaled 
model of the Saturn I-Apollo vehicle was excited by an electromagnetic shaker in each 
of its first three bending modes, one at a time, and the aerodynamic damping was 
measured. The quasi-steady predictions agree, in general, with the measured damping 
for the three configurations tested (Figs. 5-23, 5-24, and 5-25). This is at least true 
for the first and second bending mode. The somewhat poor agreement for the third 
bending mode is probably attributable as much to the data sensitivity to the high modal 
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deflections and slopes of the forebody as to the limitations of the quasi-steady method 
to predict damping for  the third mode because of its higher reduced frequency. * 

If the velocity deficit in the separated flow is neglected in computing the time lag, the 

separated flow effect on the damping is evidently underestimated (Fig. 5-23). Classic 
quasi-steady theory, which assumes the loads to be dependent upon local conditions 
only, as in the case of attached flow, obviously gives the wrong damping values (Fig. 

5-23). This is especially true for the second bending mode, where the trend with 

Mach number becomes opposite to the trend of the experimental results. Increasing 
the downstream communication velocity to U = Urn causes appreciable changes only 
in the first mode high Mach number damping. Even when the time lag effects are 
neglected, i. e. , when - 00 , the damping changes are large only for the first 
mode. It should be pointed out that some of the upstream dependence remains also for 
zero time lag ( let On the whole, the agreement 
between measured and predicted damping is acceptable considering the scatter in the 
experimental data. ** 

- CQ in Eq. (5.14) of Ref. 4). 

At the NASA Ames Research Center, Cole, in his "partial model! testing technique 
(Ref. lo), has dynamically simulated the forward portion of the Saturn I-Apollo con- 
figuration in its second bending mode. In Fig. 5-26, the quasi-steady prediction of the 
forebody damping for the second bending mode of the Langley configuration is shown 
for "disk onff and "disk off. If The predictions agree generally with the trends measured 
by Cole. Both configurations a re  damped at  subsonic speeds, whereas a t  supersonic 
speeds the disk gives a large undamping contribution. The reason for this is twofold. 

The primary cause is the loss of the slender body directing effect from the escape 
rocket, and the simultaneous increase in wake translation when the disk is mounted 
ahead of the escape rocket flare (See Section 4 and Fig. 4-3). The directing effect 

that is lost increases with Mach number in the transonic and low supersonic speed 

*The pertinent characteristic length for the reduced frequency ( wd/U ) is the local 
cross-sectional diameter d S Dref. For the third bending mode, (oDref/U) 5 0.75 
and the requirement for "quasi-steadiness, 1 1  (wd/U)2 << 1, is not satisfied over the 
whole vehicle, 

**It should be pointed out that the total damping is the result of an ill-conditioned proc- 
cess of summing a number of positive and negative damping contributions (see Figs. 
2-2 and 2-3). The large scatter in  the experimentally measured damping (see Fig. 
2-20) may be interpreted a s  evidencing the existence of the same problem when 
summing the contributions aerodynamically. 
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Fig. 5-24 Aerodynamic Damping a t  a = 0 of the Saturn I-Apollo Launch Vehicle With 
Escape Rocket, Disk-Off 
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Fig. 5-25 Aerodynamic Damping a t  cy = 0 of the Saturn I-Apollo Vehicle Without 
Escape Rocket 
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Fig. 5-26 Forebody Damping at Q! = 0 for the Second Bending Mode of the Saturn- 
Apollo Launch Vehicle With Escape Rocket, Disk-On and Disk-Off. 
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regime. The secondary cause is the undamping axial force moment from the disk it- 
self, which also increases with Mach number at  moderate supersonic speeds, (see 
Figs. 5-5 and 5-6). 

In Fig. 5-27 the computed forebody damping for the tower-off Saturn-Apollo configuration 

is shown for the second bending mode. When the loads aft of the flare a re  neglected, the 
results a r e  comparable with the pitch damping measured on rigid bodies of similar geom- 
etry (see Fig. 5-13). Large subsonic undamping and moderate supersonic damping a r e  

typical for blunt-nosed cylinder-flare bodies. Furthermore, the allevating effect on the 
undamping of an added cylindrical skirt,  which is caused mainly by the negative incre- 
mental shoulder load, is verified (Ref. 11) by observed trends in dynamic wind tunnel 
tests with rigid bodies (see Fig. 5-28). 
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Fig. 5-28 Effect of Flare Geometry on Rigid Body Damping 
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Section 6 

CONCLUSIONS 

It has been shown that by using quasi-steady theory and experimental static data one 
may successfully compute the aerodynamic damping of a vehicle that is dominated by 
separated flow. The damping so computed has been shown to be in good agreement 
with experimental data in the transonic speed range, While the supersonic damping 
has been less well substantiated quantitatively, due to lack of experimental dynamic 
data, there appears to be substantial qualitative evidence supporting the predicted 
trends. 

The results of the quasi-steady analysis reveal the following important dynamic char- 
acteristics of flow separation. 

0 Large regions of separated flow are  capable of dominating both the static 
and dynamic characteristics of a vehicle in its rigid body mode as well as  
in its elastic body bending mode. 

0 The separated flow introduces finite time lag in the vehicle dynamics 
causing a sign reversal between static and dynamic effects. That is, the 

separation-induced force is  statically stabilizing but dynamically destabilizing, 
and vice versa. 

0 The time lag effect is greatly amplified by mechanical phasing. Thus, 
moderate statically-stabilizing loads can cause drastically large undamping 
effects when a node or  oscillation center is located between the separation 
source and the induced loading. 

The quasi-steady method provides the designer with a powerful adjunct to dynamic 
testing. This approach not only provides a useful tool for predicting overall vehicle 

' damping, but also, more important to the designer, it reveals the effect on the damp- 
ing of each region of flow separation. Thus, problem areas may be pinpointed and 
eliminated early in the design phase without resorting to expensive and time-consuming 
'lcut-and try" dynamic testing. 
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Section 8 

RECOMMENDATIONS FOR FUTURE STUDY 

Obviously, the first recommendation for further study is an investigation of the dynamic 
effects of forward propagation within wakes and shock-induced separated flow regions. 
While the present Saturn vehicles appear to have avoided any significant such effects, 
future launch vehicles may not be so fortunate. It is suggested to measure experi- 
mentally the response of the submerged body to wake-source oscillations, and also 
measure local unsteady forces produced by the submerged body oscillation, In addi- 

tion, the time history of the wake-source base pressure should be recorded while 
driving the submerged body. For shock-induced separation, where the same problem 
exists, the pressure fluctuation at the shock location in response to flare perturbations 
should be measured. These data would furnish direct measurements of both upstream 
and downstream time lags and their combined dynamic effects, 

It is also desirable to improve the r igor  of the partitioning of the negative shoulder 
load into local and ifiduced components. Measurements of the fluctuating pressure in 
the shoulder region in response to wake source and submerged body oscillation would 
certainly enhance our knowledge about this phenomenon, This could be done in con- 
junction with the aforementioned time lag investigation. In addition, certain basic 

data a re  neededregardingthe shock-induced separation, such as the rate of growth of 
the leeward boundary layer with angle of attack (and the corresponding windward side 
thinning). More detailed information about the submerged body loads could also be 
obtained as part of the investigation of the forward propagation time lag, 

Finally, it is desirable to obtain further dynamic data for comparison with predictions, 
By varying frequency and spacing between wake source and submerged body, one can 
vary the perturbation wavelength to determine the limits of applicability of the quasi- 
steady technique. Again, such data may be obtained in  conjunction with the forward 
time lag investigation, 
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The foregoing recommendations are  aimed at achieving a degree of sophistication 
sufficient to allow application of the quasi-steady technique to an arbitrary launch 
configuration with a satisfactory degree of confidence. Continued efforts aimed at 
understanding the separation phenomena and their associated induced loads, and 
correlating all available experimental data with quasi-steady predictions, will con- 
tribute towards the ultimate goal of developing the capability of predicting vehicle 
static and dynamic characteristics by purely analytical means. 
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Appendix A 
NOMENCLATURE 

'Axial force, kg, .Coefficient CA = A/(pU2/2) S 

Reference length, m ,  (usually c = d) 

Body caliber, m 

Normal force, kg , Coefficient CN = N/(pU2/2) S 

Longitudinal distance, m 

Mach number 

Axial force pitching moment, kg-m, Coefficient 

Normal force pitching moment, kg-m, Coefficient 

'm 
Static pressure, kg/m 

Free stream static pressure, kg/m 

= MN/(pU2/2) Sc 
2 N 

2 

Normalized coordinate, m 
2 Dynamic pressure, kg/m , ( q = pU2/2) 

Free stream dynamic pressure, kg/m 2 

Pres sure coefficient 

2 Reference area, m 

Time, sec 

Free stream velocity, m/s 

Mean convection velocity, m/s 
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i 
X 

5 = x/c 

2 

CY 

P 
A 

P 

w 

0 

6a 

Horizontal coordinate, m 

Dimensionless x-coordinate 

Vertical coordinate, m 

Angle of attack, radians or degrees 

Equivalent spike deflection angle, radians or degrees 

Difference 

Air density, kg-sec /m 

Free-free bending frequency, radians/sec 

2 4  

Body attitude, radians or degrees 

Normalized modal deflection 

Subscripts 

a 

b 

C 

F 

N 

Q. S. 

S 

Q) 

0 

attached flow 

base 

cylinder 

generalized force 

nose 

Quasi -steady 

separated flow 

undisturbed flow 

At c r = O  
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Superscripts 

i induced 

%- .3 I induced 

- J  Differential Symbols 

-D - 3 
.' 1 

i '  J 

i e.g. A CN = separation induced normal force 

by upstream communication, e. g. cN ai 

- a2 e 
a t2 

= - .  acN acm = -  acN 
a e  I - .  aa 8 i3p ' 'Ne 

a! 
cN 
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Appendix B 
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NACA RM A54L13, March 1955 (C) 
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W. E,  Moeckel, NACA TN 2418, July 1951 (v) 

B.6 ----- , llFlow Separation Ahead of a Blunt Axially Symmetric Body at Mach 
Numbers 1.76 to 2.10," by W. E. Moeckel, NACA RM E51125, December 
1951 (U) 

B , 7  ----- , "Heat Transfer from a Hemisphere-Cylinder with Flow Separation 
Spikes,11 by J. R. Stadler and H. V. Nielsen, NACA TN 3287, September 
1951 (U) 

----- , flInvestigation of the Flow Over a Spike-Nose Hemisphere-Cylinder 

at a Mach Number of 6.8, I (  by D. H. Crawford, NASA TN D-118, December 
1959 (U) 
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S. M. Bogdonoff and I. E. Vas ,  "Preliminary Investigation of Spiked Bodies 
at Hypersonic Speeds,lI Journal of Aerospace ScienceB, Vol26, pp 65-74, 
February 1959 (v) 
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March 1957 (U) 
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Airfoils,1' by S. R. Alexander, NACA RM L58L07a;March 1959 (U) 

NASA, "Effects of Spike-Mounted Flow Deflectors on the Transonic Aero: 
dynamic Characteristics of a Blunt-Nosed Body of Revolution Having a 
Cylindrical o r  Flared Afterbody, by S. L. Treon, R. M. Wakefield, and 
E. D. Knechtel, NASA TM X-574, October 1961 (C) 

NACA, "Flow Separation from Rods Ahead of Blunt Noses at Mach Number 
2.72," by J. M. Jones, NACA RM L52E05a, July 1952 (U) 
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TN955, October 1954 (U) 
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B. 19 NASA, "Effects of Nose-Cone Angle on the Transonic Aerodynamic Charac- 
teristics of a Blunt Cone-Cylinder Body Having a Cylindrical, Flared, o r  
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B. 20 AEDC, "Influence of Several Shape Parameters on the Aerodynamics of 
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B. 21 NASA, "Transonic Static Aerodynamic Characteristics of a Blunt Cone-Cylinder 
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May 1960 (C) 

B.23 ----- , "The Effect of Nose Shape on the Static Aerodynamic Characteristics 
of Ballistic-Type Missile Models at Mach Numbers from 0.6 to 1.4, I t  by 
S. L. Treon, NASA Memo 5-18-59A, May 1959 (C) ' 

B.24 ----- , ltTransonic Static Aerodynamic Characteristics of a Blunt Cone-Cylinder 
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Appendix C 
GENERALIZED QUASI-STEADY METHODS 

The quasi-steady methodology was thoroughly discussed in Ref. 4. 

Appendix is intended to generalize and simplify the mathematical definition of the quasi- 
steady forces in regions of separated flow. Some repetition of the material presented 
in Ref. 4 is unavoidable in order to make the appendix comprehensible. 

The present 

The normal force Ns on a body element submerged in separated flow can be expressed 
in the following way using the definitions in Sketch C-1. (A similar expression is 
obtained for the axial force moment (MA,) . 

1 

---... X 

5 = x/c 

- 
Z XN X 

Sketch C-1 
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r 
8cN 

% Az + 8 - 
az Ns - 2 

L 

t . where 

and 

pU2/2 = dynamic pressure 
S = reference area 11 

In the nonstationary case, the quasi-steady values of aN and Az are the value at a 
time At earlier than the local instantaneous value for as . That is, 

' t- 
L 

c 

I At is the time required for the force Ns to respond to changes in aN and zN 

One may also express Eq. (C-2) in the following form: 

I 
/v acN 8 
CN(t) = - as(t) c (C-3) 

aN(t - A t )  - - 8 [zN(t - At) - zs(t)] J acN 

AiCN(t) = - az 
acN S 

d 

aaN 
I 

I 
.r 

*The expression for MA 'is (c =reference length) 
- 

ac ac 8 '  

Az + m*S 

az 

ac 

MA S 
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where 

- 
The separation-induced force AICN(t) can be written 

where 

acN S A i C ~ ,  = -  
acrN 

aCN, 
A ~ C ~  az 

= L- 
P 

For single degree of freedom pitching oscillations around xCG the following holds 
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6 (t) 
xs - xCG 

XN - x S 
P(t - At) = xN - XCG 8( t  - At) - 

XN - xs 

For slow oscillations, when 

the angles a# ) ,  aN(t - At) 

as(t) = 

aN(t - At) = 

P(t - At) = 

and p ( t  - At) can be expressed as follows: 

(C. 7) 

xs -XCG B(t- u ) 

x - x  xN - XCG [ 8(t - At) - 
XN -xs 
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, -.I 13 , 

"3 I 7- 

I I- 'I 

r ' 3  

- '3 5. , 

'' 3 
- '3 

That is, Eq. (C. 6) may be expressed 

/v - 
C,(t) = CN O(t - Ats) 

ffS 

xs - x  CGe(  

% - xCG 

/v 
h 

i A C,(t) = AiCN O ( t  - At - A h )  + Ai 
xN - XCG 

(11 

' ,  
where 

That is, all the force components that produce dynamic effects have the following 
general expression 

For the elastic body, Eq. (C. 5) becomes 
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This gives the following expressions for as , aYN and ,9 inEq. (C.6) 

Thus, for slow oscillations the equation corresponding to Eq. (C. 7) is 

i w 
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L -- 

That is, Eq. (C. 8) corresponds for the elastic body to the following equation 

where 

C-6 
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f 
(C. 11) LI 

, i  
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(C. 12) i 
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That is, Eq. (C. 9) is still valid if it is modified slightly 

(C. 14) 

where, in the elastic case 

lxN-xs 1 - --Np 

When the body curvature is negligible one can wri te  

Thus, Eq. (C. 13) becomes identical With Eq. (C. 8) with XCG substituted with Xnode . 
Examining Eq. (C. 8) further, one observes that At is always positive and represents 

However, A t  is not always positive. When xCG is a true time lag for all x 
larger than xs and %, Ats and A h  become negative and represent phiise leads 
rather than lags, For the elastic body xnde -corresponds to xcG and a movement 

of the nodal point produces the same effect as the CG movement for the rigid body. 

/v 

CGJ, N 
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